• Aide
  • Eurêkoi Eurêkoi

Livre

A first course in heat transfer

Résumé

Un cours en anglais sur les transferts thermiques, avec des exercices et leurs corrigés.


  • Autre(s) auteur(s)
  • Éditeur(s)
  • Date
    • impr. 2011
  • Notes
    • La couv. porte en plus : "a course for enginers and scientists" et "application exercices and problems"
    • Bibliogr. p. 227-228. Index
    • En anglais
  • Langues
    • Anglais
  • Description matérielle
    • 1 vol. (XVIII-230 p.) : ill., couv. ill. en coul. ; 25 cm
  • Collections
  • Sujet(s)
  • ISBN
    • 978-2-10-056412-5
  • Indice
    • 536 Chaleur, convection
  • Quatrième de couverture
    • Sciences sup

      A first course in heat transfer

      This textbook is an introduction to heat transfer based on the understanding of the physical phenomena as well as an introduction to heat transfer engineering. The three transfer modes, by conduction, radiation and convection in single phase are treated and coupled in practical applications. The knowledge of the first principle of thermodynamics and basic notions of mathematics are sufficient for a complete understanding of the course. It is completed by a section « Useful data for design », which allows a first design of many various systems to be achieved.

      A particular care is also brought to the methodology for modeling real thermal systems in application exercises and problems, which illustrate the course : First, by defining a resolution strategy, then by building, from realistic assumptions, simple models, which are introduced in the textbook, by solving this well conditioned problem and finally by validating this modeling.

      Application problems deal with the design of a thermal solar collector, the thermal design of a nuclear plant, the atmospheric greenhouse effect, the cryogenic engine of a commercial rocket, in order to highlight the universality of heat transfer.

      This textbook will be an useful tool for undergraduate students and for generalist engineers, particularly design engineers who are not specialized in heat transfer, but have to face heat transfer phenomena in mechanical, chemical, electrical, building and, more generally, energy engineering.


  • Tables des matières
      • A first course in heat transfer

      • Jean Taine

      • Estelle Iacona

      • Dunod

      • List of symbolsXI
      • PrefaceXV
      • ForewordXVII
      • Chapter 1 ¤ Heat transfer modes1
      • 1.1 Physical limitations and aims of heat transfer1
      • 1.1.1 The system1
      • 1.1.2 Thermal Non-Equilibrium and Local Thermal Equilibrium (LTE)2
      • 1.1.3 Objectives of heat transfer computations or experiments - Conventions about the fluxes and transfer rates of heat or radiative energy3
      • 1.2 First approach of radiative transfer5
      • 1.3 Conductive transfer6
      • 1.3.1 Conductive flux6
      • 1.3.2 Orders of magnitude of the thermal conductivity7
      • 1.3.3 Systems with large apparent conductivity : heat pipes9
      • 1.4 Convective flux ; conductive flux coupled to convection9
      • 1.4.1 The phenomenon of convection9
      • 1.4.2 Conductive fluxes coupled to convection11
      • 1.4.3 Application to heat pipes14
      • 1.5 Classical boundary conditions15
      • 1.5.1 Example 1 : opaque solid and transparent medium15
      • 1.5.2 Example 2 : two opaque media16
      • 1.5.3 Example 3 : (semi) transparent and transparent media16
      • 1.5.4 Example 4 : thermal contact16
      • 1.5.5 Example 5 : interface between two phases17
      • 1.6 Steady energy balance of a system at rest17
      • 1.6.1 General formulation of the energy balance17
      • 1.6.2 Methodology for solving a heat transfer problem18
      • 1.6.3 Application exercise : Heating in volume18
      • 1.6.4 Application exercise : Nuclear fuel rod20
      • Chapter 2 ¤ Linear steady conduction23
      • 2.1 The electric analogy and its limitations23
      • 2.1.1 Electric analogy23
      • 2.1.2 Implementation exercises : thermal resistances25
      • 2.1.3 Application exercise : The insulator paradox in cylindrical geometry27
      • 2.1.4 Application exercise : Heat exchanger element ; global exchange coefficient28
      • 2.2 Fin and fin approximation29
      • 2.2.1 The fin approximation30
      • 2.2.2 Fin effectiveness32
      • 2.2.3 Ideal (isothermal) fin34
      • 2.2.4 Infinite fin34
      • 2.2.5 Results related to various fin geometries34
      • 2.2.6 Validity of the fin approximation regarding the temperature profile35
      • 2.2.7 General resolution of a fin problem35
      • 2.2.8 Validity of the fin approximation regarding the global exchanged heat transfer rate37
      • 2.2.9 Application exercise : Steel fin38
      • Application problem : Heat losses of an apartment38
      • Chapter 3 ¤ Unsteady diffusion ; heat conduction45
      • 3.1 Introduction45
      • 3.2 General theorems47
      • 3.2.1 Superimposition theorem47
      • 3.2.2 Dimensional analysis, pi theorem50
      • 3.3 Response of a semi-infinite medium52
      • 3.3.1 Response after a short time52
      • 3.3.2 Response to a periodic excitation55
      • 3.3.3 Application exercise : Thermal contact58
      • 3.4 Response of a finite medium60
      • 3.4.1 Response to a sudden perturbation61
      • 3.4.2 Response to a periodic excitation62
      • 3.5 Diffusion length and time scales62
      • 3.5.1 Diffusion characteristic time62
      • 3.5.2 Biot number65
      • 3.5.3 Fourier number65
      • 3.5.4 Application exercise : Response time of a thermocouple66
      • 3.5.5 Application exercise : Thermal bridge67
      • Chapter 4 ¤ Radiative transfer between opaque bodies69
      • 4.1 Thermal radiation spectrum70
      • 4.2 Expression of the spectral flux72
      • 4.2.1 Directional spectral flux72
      • 4.2.2 Hemispherical spectral flux73
      • 4.2.3 Case of an isotropic intensity74
      • 4.2.4 Radiative flux ; radiative flux vector74
      • 4.3 Thermal equilibrium and radiative properties76
      • 4.3.1 Spectral directional absorptivity and reflectivity76
      • 4.3.2 Equilibrium radiation77
      • 4.3.3 Spectral directional emissivity78
      • 4.3.4 Fundamental law of thermal radiation79
      • 4.3.5 Usual approximations79
      • 4.4 Properties of the equilibrium radiation81
      • 4.5 Simple models of radiative transfer83
      • 4.5.1 Convex opaque isothermal body entirely surrounded by an isothermal black body83
      • 4.5.2 Small-sized convex opaque body in an enclosure at thermal equilibrium84
      • 4.5.3 Conditions of linearization of the radiative flux85
      • 4.5.4 Generalization to media opaque or transparent by spectral bands86
      • 4.5.5 Application exercice : Measurement by thermocouple of a gas temperature89
      • 4.5.6 Application exercice : Thermal study of an incandescent light bulb91
      • 4.6 Radiative metrology, bichromatic pyrometry93
      • 4.7 General method of radiative transfer between opaque bodies95
      • 4.7.1 Method of incident and leaving fluxes97
      • 4.7.2 Application exercise : Standard of intensity ; black body101
      • 4.7.3 View factor properties104
      • 4.7.4 Application exercise : Cryogenic insulating structure106
      • 4.8 Generalization of the method108
      • 4.8.1 Generalization to the case of semitransparent walls108
      • 4.8.2 Generalization to the case of a directional incident radiation110
      • Chapter 5 ¤ Introduction to convective transfer113
      • 5.1 Energy balance for a rigid system114
      • 5.1.1 Material system114
      • 5.1.2 Application example of a material system : Energy balance of a wire115
      • 5.1.3 Open system of boundaries at rest in steady state116
      • 5.1.4 Application example of open system : Energy balance of a wire117
      • 5.1.5 Application example of open system : Melting front118
      • 5.2 Energy balance for a single phase fluid119
      • 5.2.1 Transport theorems120
      • 5.2.2 Simplified energy balance equation122
      • 5.3 Heat transfer in a duct of constant cross section125
      • 5.3.1 Simplifying assumptions125
      • 5.3.2 Steady energy balance equation125
      • 5.3.3 Application exercise : Compared efficiencies of co-current and counter-current heat exchangers127
      • 5.4 Dimensional analysis in forced convection133
      • 5.4.1 Elementary notion of viscosity133
      • 5.4.2 Key characteristic dimensionless quantities134
      • 5.4.3 Physical meanings of the key dimensionless quantities137
      • 5.4.4 Similitude in forced convection139
      • 5.4.5 Ranges of laminar and turbulent flows for a plate and a duct140
      • 5.5 External forced convection142
      • 5.5.1 External laminar forced convection142
      • 5.5.2 External turbulent forced convection145
      • 5.5.3 Implementation exercise : plate cooling148
      • 5.6 Internal forced convection149
      • 5.6.1 Internal laminar forced convection149
      • 5.6.2 Internal turbulent forced convection153
      • 5.6.3 Comparison between turbulent transfer along a plate and into a tube155
      • 5.6.4 Other internal flows ; hydraulic diameter157
      • 5.6.5 Implementation exercise : flow into a rough tube158
      • 5.7 External thermal natural convection160
      • 5.7.1 Dimensional analysis in natural thermal convection along a vertical plate161
      • 5.7.2 Transition between laminar and turbulent regimes along a vertical plate164
      • 5.7.3 Results related to external natural convection164
      • 5.7.4 Application exercise : Heating a room166
      • 5.8 Internal natural convection167
      • 5.8.1 Application exercise : Impact of an air layer thickness167
      • 5.9 Mixed convection : competition between forced convection and natural convection168
      • Application problems169
      • Problem 1 : Cooling of a cryogenic rocket engine169
      • Problem 2 : Thermal study of a fast-neutron reactor173
      • Problem 3 : Design of a thermal solar panel173
      • Problem 4 : Atmospheric greenhouse effect183
      • Appendix A ¤ Use of the Laplace transform187
      • Appendix B ¤ Use of the method of separation of variables193
      • Appendix C ¤ Use of the green function197
      • Appendix D ¤ Useful data for design203
      • D.1 Thermophysical Properties203
      • D.1.1 Gases at atmospheric pressure203
      • D.1.2 Liquids207
      • D.1.3 Solids210
      • D.2 Some useful functions, equations and unity conversions212
      • D.2.1 Error function212
      • D.2.2 Temperature conversion213
      • D.2.3 Miscellaneous conversion factors213
      • D.3 Useful correlations for convection214
      • D.3.1 External forced convection214
      • D.3.2 Internal forced convection216
      • D.3.3 External natural convection219
      • D.3.4 Internal natural convection222
      • D.4 Data for radiation224
      • D.4.1 Equilibrium radiation224
      • D.4.2 Some view factors225
      • Bibliography227
      • Index229

  • Origine de la notice:
    • FR-751131015
  • Disponible - 536 TAI

    Niveau 2 - Sciences