• Aide
  • Eurêkoi Eurêkoi

Livre

Geomechanics applied to the petroleum industry

Résumé

Etude de la mécanique des sols pour l'industrie pétrolière en trois parties. La 1re partie donne des informations sur la mécanique et les caractéristiques des roches, et les modèles mécaniques de leurs comportements. La 2e partie aborde le rôle de la mécanique des sols pour le forage et la production. La 3e partie traite du rapport entre la production de fluides et la déformation mécanique.


  • Contributeur(s)
  • Éditeur(s)
  • Date
    • 2011
  • Notes
    • Bibliogr. Index
    • En anglais
  • Langues
    • Anglais
  • Description matérielle
    • 1 vol. (XVI-198 p.) : ill. en noir et en coul., couv. ill. en coul. ; 24 cm
  • Collections
  • Sujet(s)
  • ISBN
    • 978-2-7108-0932-6
  • Indice
    • 665 Industrie pétrolière, pétrochimie
  • Quatrième de couverture
    • Geomechanics applied to the petroleum industry

      Designing an efficient drilling program is a key step for the development of an oil and/or gas field. Variations in reservoir pressure, saturation and temperature, induced by reservoir production or CO2 injection, involve various coupled physical and chemical processes.

      Geomechanics, which consider all thermohydromechanical phenomena involved in rock behavior, play an important role in every operation involved in the exploitation of hydrocarbons, from drilling to production, and in CO2 geological storage operations as well. Pressure changes in the reservoir modify the in situ stresses and induce strains, not only within the reservoir itself, but also in the entire sedimentary column. In turn, thèse stress variations and associated strains modify the fluids flow in the reservoir and change the wellbore stability parameters.

      This book offers a large overview on applications of Geomechanics to petroleum industry. It presents the fundamentals of rock mechanics, describes the methods used to characterise rocks in the laboratory and the modelling of their mechanical behaviour ; it gives elements of numerical geomechanical modelling at the site scale.

      It also demonstrates the role of Geomechanics in the optimisation of drilling and production : it encompasses drillability, wellbore stability, sand production and hydraulic fracturing ; it provides the basic attainments to deal with the environmental aspects of heave or subsidence of the surface layers, CO2 sequestration and well abandonment ; and it shows how seismic monitoring and geomechanical modelling of reservoirs can help to optimise production or check cap rock integrity.

      This book will be of interest to all engineers involved in oil field development and petroleum engineering students, whether drillers or producers. It aims also at providing a large range of potential users with a simple approach of a broad field of knowledge.


  • Tables des matières
      • Geomechanics applied to the petroleum industry

      • Jean-François Nauroy

      • t Editions Technip

      • PrefaceV
      • AcknowledgementsVII
      • List of AuthorsXV
      • Main SymbolsXVII
      • IntroductionXIX
      • Chapter 1
        Elements of rock mechanics fundamentals
      • 1.1 Basic notions 1
      • 1.1.1 Rock characteristics1
      • 1.1.1.1 Minerals and rocks1
      • 1.1.1.2 Rock classification1
      • 1.1.1.3 Sedimentary rock and porous medium3
      • 1.1.1.4 Properties of heterogeneous media4
      • 1.1.2 Stresses and strains5
      • 1.1.2.1 Stresses5
      • 1.1.2.2 Strains8
      • 1.1.2.3 Effective stress10
      • 1.1.2.4 State Boundary Surface (SBS)10
      • 1.1.2.5 Elastic properties11
      • 1.1.2.6 Dynamic moduli of elasticity13
      • 1.1.2.7 Anisotropy14
      • 1.2 Geomechanical characterisation of rocks in the laboratory 15
      • 1.2.1 Laboratory tests15
      • 1.2.2 Tests without interstitial fluid16
      • 1.2.2.1 Uniaxial compression test16
      • 1.2.2.2 Uniaxial tension test17
      • 1.2.2.3 Brazilian test18
      • 1.2.3 Uniaxial strain (or oedometric) test18
      • 1.2.4 Conventional triaxial test19
      • 1.2.5 Effective stresses and drained triaxial test21
      • 1.2.6 Rock behaviour during compression23
      • 1.2.6.1 Elastic behaviour and measurement of elastic parameters23
      • 1.2.6.2 Sandstones (damage, failure)25
      • 1.2.6.3 Carbonates (plasticity, failure)28
      • 1.2.6.4 Shales30
      • 1.2.7 Simulating depletion in the laboratory31
      • 1.3 Modelling rock behaviour 31
      • 1.3.1 Representation of the porous medium32
      • 1.3.2 Fundamental assumptions32
      • 1.3.3 Equilibrium equations32
      • 1.3.3.1 Conservation of mass32
      • 1.3.3.2 Equation of motion33
      • 1.3.4 Fluid constitutive equations33
      • 1.3.5 Clausius-Duhem inequality and thermal equation35
      • 1.3.6 Conduction laws36
      • 1.3.6.1 Fluid conduction law36
      • 1.3.6.2 Heat conduction law37
      • 1.3.7 Constitutive equations of the skeleton and the porous medium37
      • 1.3.8 Linear poroelastic behaviour38
      • 1.3.8.1 Skeleton constitutive equations38
      • 1.3.8.2 Porous medium constitutive equations39
      • 1.3.8.3 Equation governing the variation in elementary Eulerian porosity40
      • 1.3.9 Nonlinear poroelastic behaviour41
      • 1.3.10 Poroelastoplastic behaviour45
      • 1.3.10.1 Plastic strains, plastic porosity and trapped energy45
      • 1.3.10.2 Cam-Clay model constitutive equations47
      • 1.3.10.3 Plasticity criterion48
      • 1.3.10.4 Flow rule49
      • 1.3.10.5 Strain-hardening equations50
      • 1.3.10.6 Incremental expression of the flow rule52
      • 1.4 Determination of in situ stresses 52
      • 1.4.1 Determination from in situ measurements53
      • 1.4.1.1 Horizontal stress directions53
      • 1.4.1.2 Stress amplitude57
      • 1.4.2 Determination from core measurements61
      • 1.4.3 How to constrain the stress tensor62
      • 1.5 Geomechanical modelling elements 62
      • 1.5.1 Geology and griding63
      • 1.5.2 Geomechanical properties63
      • 1.5.3 Boundary conditions68
      • Chapter 2
        Geomechanics, drilling and production
      • 2.1 Drilling performance 69
      • 2.1.1 Empirical drilling efficiency : weight on bit, rate of penetration and torque71
      • 2.1.1.1 Axial kinematics of the bit : normalised rate of penetration71
      • 2.1.1.2 Circumferential response and representation in the plane RD - TD74
      • 2.1.1.3 Cutter wear, a major concern77
      • 2.1.2 Drillability and detailed analysis of failure mechanisms at the working face78
      • 2.1.2.1 Rock cutting mechanisms78
      • 2.1.2.2 Shear cutting regimes79
      • 2.1.2.3 Consequences and applications81
      • 2.1.2.4 Punching models for bit behaviour83
      • 2.1.3 Drilling performance including evacuation of cuttings and bit dynamics84
      • 2.1.3.1 Modelling of jamming during drilling85
      • 2.1.3.2 Drilling efficiency and vibrations of the drilling system86
      • 2.2 Borehole stability during drilling 88
      • 2.2.1 Instabilities and drilling88
      • 2.2.1.1 Description of drilling modes88
      • 2.2.1.2 Borehole instability mechanisms while drilling88
      • 2.2.2 Instabilities by formation type92
      • 2.2.2.1 Shale formations92
      • 2.2.2.2 Unconsolidated formations (erosion)93
      • 2.2.2.3 Fractured/cracked formations93
      • 2.2.2.4 Creeping formations (salt or plastic shales)95
      • 2.2.2.5 Formations in tectonic zones96
      • 2.2.3 Stability calculation96
      • 2.2.3.1 Analytical solution to the elasticity problem96
      • 2.2.3.2 Wall instability model99
      • 2.3 Sand production 99
      • 2.3.1 Types of sand production100
      • 2.3.1.1 Transient solid production100
      • 2.3.1.2 Continuous production100
      • 2.3.1.3 Catastrophic solid production100
      • 2.3.2 Mechanisms involved101
      • 2.3.2.1 Initiation of sand production101
      • 2.3.2.2 Special case of CHOPS101
      • 2.3.3 Sand production prediction105
      • 2.3.3.1 Parameters affecting solid production105
      • 2.3.3.2 Empirical methods from in situ measurements106
      • 2.3.3.3 Rock failure around a wellbore107
      • 2.3.3.4 Numerical modelling109
      • 2.3.3.5 Experimental validation of sand production prediction111
      • 2.3.4 Sand production prevention111
      • 2.3.4.1 Reducing the effective stresses112
      • 2.3.4.2 Immobilising the material112
      • 2.3.4.3 Filters used113
      • 2.3.4.4 Frac-pack115
      • 2.3.4.5 Increasing the strength of the material116
      • 2.3.4.6 Sand management117
      • 2.4 Well stimulation by hydraulic fracturing 117
      • 2.4.1 Description of the hydraulic fracturing process118
      • 2.4.2 Opening a fracture around a vertical wellbore119
      • 2.4.3 Description of fractures120
      • 2.4.4 Modelling of hydraulic fracture propagation122
      • 2.4.4.1 Simplified 2D model : Carter's model123
      • 2.4.4.2 GDK (Geertsma and de Klerk) type 2D models123
      • 2.4.4.3 PKN (Perkins, Kern, Nordgren) model125
      • 2.4.4.4 Comments on 2D models126
      • 2.4.4.5 Pseudo-3D models127
      • 2.4.4.6 Fully-3D models127
      • 2.4.5 Fracture monitoring127
      • 2.4.5.1 Pressure analysis during fracturing127
      • 2.4.5.2 Geometry of the hydraulic fracture128
      • 2.5 Induced thermal fracturing 130
      • 2.5.1 Description of fracturing induced by injection of cold fluid131
      • 2.5.2 Modelling132
      • Chapter 3
        Geomechanics and reservoir
      • 3.1 Modelling the geomechanical and reservoir coupling 136
      • 3.1.1 Flow and permeability136
      • 3.1.1.1 Hydraulic diffusivity equation136
      • 3.1.1.2 Reservoir rock compressibility137
      • 3.1.1.3 Intrinsic permeability variation139
      • 3.1.2 Coupling between geomechanical and reservoir models140
      • 3.1.2.1 Conventional reservoir approach140
      • 3.1.2.2 Limitations of the conventional reservoir approach141
      • 3.1.2.3 Geomechanical approach142
      • 3.1.2.4 Coupling between fluid flow and geomechanics143
      • 3.1.2.5 Example of external coupling in porosity on a highly compactable reservoir144
      • 3.1.2.6 Example of coupling in permeability149
      • 3.1.3 Stress path followed by the reservoir during depletion151
      • 3.1.3.1 In situ measurements and assumption of uniaxial compaction152
      • 3.1.3.2 Factors influencing reservoir behaviour during depletion153
      • 3.2 Environmental aspects 154
      • 3.2.1 Subsidence154
      • 3.2.1.1 Introduction and famous examples154
      • 3.2.1.2 Analysis of subsidence related to the production of underground fluids159
      • 3.2.1.3 Subsidence measurement and prediction160
      • 3.2.2 CO2 sequestration162
      • 3.2.2.1 Short-term geomechanical risks162
      • 3.2.2.2 Modelling163
      • 3.2.2.3 Medium-term geomechanical risks164
      • 3.2.3 Well abandonment164
      • 3.2.3.1 Abandonment procedure165
      • 3.2.3.2 Behaviour of the well plug after abandonment166
      • 3.3 Geomechanical monitoring of reservoirs 169
      • 3.3.1 Measurement of surface deformations169
      • 3.3.2 Seismic monitoring170
      • 3.3.3 Passive seismic monitoring173
      • 3.3.3.1 Temporary or permanent passive seismic monitoring174
      • 3.3.3.2 Surface PSM175
      • 3.3.3.3 Downhole PSM175
      • References179
      • Index195

  • Origine de la notice:
    • FR-751131015
  • Indisponible : En catalogage