• Aide
  • Eurêkoi Eurêkoi

Livre

Li-ion batteries : development and perspectives

Résumé

Une synthèse sur la nécessaire recherche dans le domaine des batteries lithium-ion de nouvelle génération. Les auteurs présentent les verrous actuels et les enjeux pour les années à venir. En effet, cette solution de stockage, si elle est utile au développement des énergies propres pour accompagner la transition écologique, ne peut qu'avoir un impact environnemental et sociétal. ©Electre 2022


  • Contributeur(s)
  • Éditeur(s)
  • Date
    • 2022
  • Notes
    • En anglais
  • Langues
    • Anglais
  • Description matérielle
    • 1 vol. ; 24 x 16 cm
  • Collections
  • Sujet(s)
  • ISBN
    • 978-2-7598-2555-4
  • Indice
    • 621.35 Accumulateurs et piles, piles à combustible
  • Quatrième de couverture
    • Li-ion Batteries

      Development and Perspectives

      Thanks to their improved performance and the continuous decrease of their manufacturing costs, lithium batteries, initially marketed in 1991 by SONY to power portable equipment, now play a key role in the expected massive development of electric mobility.

      Connected to the electricity grid via the electrified vehicles they will power, lithium batteries will also be used as a massive means of buffering renewable energies, as well as tools for supporting the network (peak shaving, frequency regulation, etc.), making it possible to multiply their usefulness beyond their primary function (ensuring vehicle mobility).

      These developments will profoundly transform our societies, and will not only make it possible to significantly reduce C02 emissions and the consumption of fossil fuels (oil, gas, coal), but also, if they are conducted and coordinated effectively, to contribute to economic growth.

      The development of electric mobility thus offers a unique opportunity to reconcile legitimate environmental protection requirements with industrial development objectives.

      The aim of this book is to provide the reader with an overview of lithium battery technologies, to give an overview of current initiatives around the world, and to outline some perspectives for the future.

      The authors of this book, who are researchers at the CEA and the CNRS, all have expertise based on several years of experience in the development of lithium batteries and post-lithium ion batteries, covering all the elements of the value chain, from the design and synthesis of electrode materials to integration in the vehicle.


  • Tables des matières
      • Li-ion Batteries

      • Development and Perspectives

      • Didier Bloch, Sébastien Martinet, Thierry Priem and Christian Ngô

      • EDP sciences

      • PrefaceIII
      • Chapter 1
      • Introduction1
      • 1.1 Brief History of Primary and Secondary Batteries6
      • 1.2 General Information on Li-ion Batteries9
      • Bibliography11
      • Chapter 2
      • Positive Electrode Materials for « Lithium-ion » Accumulators13
      • 2.1 Positive Electrode Materials of « Spinel » Structure14
      • 2.2 Positive Electrode Materials with Lithiated Layered Oxide Structure20
      • 2.3 Positive Electrode Materials with Olivine Structure32
      • References37
      • Chapter 3
      • Negative Electrode Materials45
      • 3.1 Negative Electrode Materials : Several Solutions45
      • 3.1.1 Insertion-Intercalation46
      • 3.1.2 Conversion47
      • 3.1.3 Alloying47
      • 3.2 Carbon48
      • 3.2.1 Historical Background48
      • 3.2.2 Interest49
      • 3.2.3 Relationship between Structural Characteristics and Performance50
      • 3.3 Silicon53
      • 3.3.1 (De)lithiation Mechanisms53
      • 3.3.2 Degradation Mechanisms54
      • 3.3.3 Material Improvement Approaches56
      • 3.4 Lithium Metal57
      • Bibliography59
      • Chapter 4
      • Organic Electrode Materials63
      • 4.1 Different Types of Organic Electrode Materials65
      • 4.1.1 ?-Extended System (Conducting Polymers)65
      • 4.1.2 Stable Radical66
      • 4.1.3 Organosulfides & Thioethers67
      • 4.1.4 Carbonyl Functions67
      • 4.1.5 Aromatic Amines68
      • 4.2 Implementation Strategies68
      • 4.2.1 Grafting on Inorganic or Organic Support69
      • 4.2.2 Polyanionic Salt Formation71
      • References74
      • Chapter 5
      • Electrolytes and Separators79
      • 5.1 Liquid Electrolytes80
      • 5.1.1 Lithium Salts and Organic Solvents80
      • 5.1.2 Lithium Salts and Ionic Liquids84
      • 5.2 Separators85
      • 5.2.1 Properties of Separators85
      • 5.2.2 The Separator Market86
      • 5.2.3 Cost and Security87
      • Bibliography88
      • Chapter 6
      • Na-ion Batteries : Should/Can Lithium be Replaced ?89
      • 6.1 General Aspects89
      • 6.1.1 Should Lithium be Replaced ?89
      • 6.1.2 Can Lithium be Replaced ? Towards a 100% Abundant Element-Based Battery92
      • 6.2 The Na-ion Technology93
      • 6.2.1 Brief History93
      • 6.2.2 Operating Principle93
      • 6.3 State of the Art95
      • 6.3.1 Negative Electrode Materials95
      • 6.3.2 Non-Carbon Materials96
      • 6.3.3 Positive Electrode Materials98
      • 6.3.4 Electrolytes and Interfaces101
      • 6.4 Full System Performance102
      • 6.5 Outlook102
      • 6.5.1 Low Cost Approach102
      • 6.5.2 High Power Approach103
      • References103
      • Chapter 7
      • Metal-Sulfur Batteries107
      • 7.1 The Metal-Sulfur Cell107
      • 7.1.1 Advantages and Comparison with Other Technologies107
      • 7.1.2 Working Mechanism of the Metal-Sulfur Cell108
      • 7.1.3 The (Li,Na)-ion Sulfur Cell110
      • 7.2 Technology State of the Art and Performances110
      • 7.2.1 Main Actors110
      • 7.2.2 Understanding the Complex Mechanism110
      • 7.2.3 Development Strategies112
      • 7.2.4 All-Solid-State Metal-Sulfur Batteries119
      • 7.2.5 Industrial Actors119
      • 7.3 Perspectives and Applications121
      • Bibliography122
      • Chapter 8
      • All Solid-State Batteries125
      • 8.1 Introduction and Overview125
      • 8.2 Main Families of Solid Ionic Conductors127
      • 8.2.1 Polymeric Solid Electrolytes127
      • 8.2.2 Inorganic Solid Electrolytes130
      • 8.2.3 Hybrid Solid Electrolytes133
      • 8.3 Electrochemical Stability of Solid Electrolytes135
      • 8.4 All-Solid-State Cells137
      • 8.5 Academic & Industrial Players138
      • Bibliography139
      • Chapter 9
      • Supercapacitors : From Material to Cell145
      • 9.1 Operating Principle147
      • 9.2 Carbon/Carbon Based Technology152
      • 9.2.1 Electrode Design and Components152
      • 9.2.2 Electrolyte166
      • 9.2.3 Separators176
      • 9.3 Hybrid Systems179
      • 9.3.1 Activated Carbon/Mn02 System181
      • 9.3.2 Lead Oxide/Activated Carbon System182
      • 9.3.3 NiOOH/Activated Carbon System182
      • 9.3.4 Graphite/Activated Carbon System182
      • Bibliography186
      • Chapter 10
      • Supercapacitors : Cells and Modules199
      • 10.1 Cell Design199
      • 10.1.1 Small Cells200
      • 10.1.2 High-Capacity Cells200
      • 10.2 Design of Modules and Systems207
      • 10.2.1 Modules Based on Hard Casing Cells208
      • 10.2.2 High Capacity Modules Based on Soft Packaging Cells (Pouch Cells)213
      • 10.2.3 High Capacity Modules Working in Aqueous Medium216
      • Bibliography218
      • Chapter 11
      • Characterization of the Electrical Performance of Li-ion Cells221
      • 11.1 Characterization of the Electrical Performance of Individual Cells221
      • 11.1.1 Acceptance Tests221
      • 11.1.2 Beginning of Life Performance Tests223
      • 11.1.3 Ageing Performance Tests227
      • 11.2 Resistance Measurements of Individual Cells229
      • 11.2.1 Introduction229
      • 11.2.2 How to Define an Internal Resistance ?229
      • 11.2.3 Different Methods of Measuring Internal Resistance231
      • 11.2.4 Conclusion243
      • Bibliography244
      • Chapter 12
      • Microstructural and Physical and Chemical Characterizations of Battery Materials245
      • 12.1 Introduction : Characterization Methodology to Understand the Electrochemical Response of a Battery245
      • 12.2 Analysis of Mechanisms Associated with Exchangeable Lithium Loss249
      • 12.2.1 SEI Formation and Li Metal Precipitation on Negative Electrode249
      • 12.2.2 Loss of Lithium Content of Positive Electrode252
      • 12.3 Analysis of Phase Transformations that Limit Lithium Mobility254
      • 12.3.1 Microstructural Modification of a Positive Electrode254
      • 12.4 Mechanical Blocking, Obstruction, Disconnection and Loss of Electrical Contact255
      • 12.4.1 Loss of Graphite Electrode Capacity in Cycling at Low Temperatures255
      • 12.4.2 Exogenous Deposits257
      • 12.5 Electrolyte Degradation258
      • 12.6 Perspectives259
      • Bibliography259
      • Chapter 13
      • Cells and Electrodes Manufacturing Process263
      • 13.1 General Principles263
      • 13.2 Cell Design264
      • 13.3 Electrode Manufacturing Process268
      • 13.3.1 Electrode Formulation268
      • 13.3.2 Slurry Preparation269
      • 13.4 Electrodes270
      • 13.4.1 Calendering272
      • 13.5 Cell Fabrication Process272
      • 13.5.1 Slitting272
      • 13.5.2 Cell Assembly273
      • 13.5.3 Electrolyte Filling275
      • 13.5.4 Electrical Formation275
      • 13.6 Cells Bill of Materials and Cost Aspects275
      • 13.7 New Processes/Perspectives276
      • 13.8 Conclusion277
      • Bibliography277
      • Chapter 14
      • Battery System and Battery Management System (BMS)279
      • 14.1 Battery System Architecture279
      • 14.2 Battery System in Its Electrical Environment281
      • 14.3 Power Component Associated to Battery Pack284
      • 14.4 Multiples Functions of BMS287
      • 14.5 Design and Manufacture of Battery Packs293
      • 14.6 Examples of Innovation on Battery Systems296
      • References301
      • Chapter 15
      • Definition of the State Estimation Algorithms of a Battery System and Associated Calculation Methods303
      • 15.1 Battery State Indicator Definition303
      • 15.1.1 State of Charge303
      • 15.1.2 State of Energy304
      • 15.1.3 State of Health304
      • 15.1.4 State of Function305
      • 15.1.5 State of Safety305
      • 15.2 Battery Diagnosis Methods306
      • 15.2.1 State of Charge Estimation307
      • 15.2.2 Kalman Filter Exploitation for State of Charge Estimation312
      • 15.2.3 Battery Total Capacity Estimation312
      • 15.2.4 Alternative Battery State Diagnosis Method315
      • Bibliography316
      • Chapter 16
      • Standards and Safety317
      • 16.1 Phenomena Involved in Abusive Conditions318
      • 16.1.1 Phenomena at Cell Level319
      • 16.1.2 Phenomena at Module and Pack Level323
      • 16.2 Regulation325
      • 16.3 Standards327
      • 16.4 Tests and Additional Analysis333
      • 16.5 Solutions to Improve Safety at Different Levels334
      • 16.5.1 Improvement of the Components within the Cell335
      • 16.5.2 Safety Devices at Cell Level340
      • 16.5.3 Safety Devices at the Module and Battery System Level342
      • 16.6 Conclusions and Prospects346
      • Bibliography347
      • Chapter 17
      • Li-ion Battery Recycling351
      • 17.1 Contextual Elements351
      • 17.2 Process Head353
      • 17.3 Process Core (Separation - Valorization)354
      • 17.3.1 Pyrometallurgy354
      • 17.3.2 Hydrometallurgy355
      • 17.4 Conclusion363
      • References364
      • Chapter 18
      • Li-ion Batteries Environmental Impacts and Life Cycle Assessment (LCA)369
      • 18.1 Why a Focus on Battery Environmental Impacts ?369
      • 18.2 How to Quantify Batteries Environmental Impacts ?370
      • 18.3 What are the Main Impacts of Lithium-ion Batteries ?372
      • 18.4 What are the Impact Sources ?379
      • 18.5 Guidelines for Ecodesign381
      • Bibliography383
      • Chapter 19
      • Applications and Markets - User Cost385
      • 19.1 General Elements of Market Analysis - Focus on the Electrified Vehicle Market385
      • 19.2 Issue of User Cost388
      • References389
      • Conclusion391
      • Glossary395
      • The Authors407

  • Origine de la notice:
    • Electre
  • Disponible - 621.35 LII

    Niveau 3 - Techniques