• Aide
  • Eurêkoi Eurêkoi

Livre

Nuclear reactor systems : a technical, historical and dynamic approach

Résumé

Une description historique de l'évolution des réacteurs nucléaires depuis 1942, date de l'expérience de Fermi. Les auteurs expliquent notamment le processus de sélection sévère des réacteurs, dont ceux à eau légère, qui occupent la majeure partie du biotope actuel. Il aborde les réacteurs refroidis au gaz, les réacteurs modérés nucléaires à eau lourde, les réacteurs expérimentaux, etc. ©Electre 2022


  • Autre(s) auteur(s)
  • Éditeur(s)
  • Date
    • DL 2016
  • Notes
    • En anglais
    • Autre(s) tirage(s) : 2022
  • Langues
    • Anglais
  • Description matérielle
    • 1 vol. (XXIII-408 p.) : ill. en noir et en coul., couv. ill. en coul. ; 25 cm
  • Collections
  • Autre(s) édition(s)
  • Sujet(s)
  • ISBN
    • 978-2-7598-0669-0 ;
    • 978-2-7598-3070-1
  • Indice
    • 621.10 Énergie nucléaire, réacteurs et centrales nucléaires
  • Quatrième de couverture
    • Nuclear Reactor Systems

      A technical, historical and dynamic approach

      The evolution of nuclear reactors since the 1942 Fermi experiment can be described along the lines of natural history, with an initial flourish of uninhibited creativity followed by a severe selection process leading to a handful of surviving species, with light water reactors occupying most of the biotope today.

      This book combines four approaches :

      • A descriptive one. This gives an overview of the main strengths and weaknesses of the different reactor systems.
      • A historical approach, from the 1940's to nowadays, with an extrapolation to the near future. The LWR dominance being firmly established, what is the next step ?
      • An axiomatic approach. Starting with a set of long term criteria concerning the fuel cycle sustainability, a conceptual solution is established, and then a family of reactor systems is selected for development and qualification.
      • A dynamic approach. In the early 2000s, the prevailing image combined a « nuclear renaissance », a strong limitation of the greenhouse gases concentration and a dynamic growth of the world economy. Updating the strategy in the wake of the last decade events requires a sharper understanding of the driving forces as well as of the influence of the post-Fukushima safety framework on the design constraints.

      All the books of the « Génie Atomique » series have adopted an instructional approach. Initially intended for INSTN's students, they can be greatly helpful to physicists and engineers involved in the development or operational aspects of nuclear power.


  • Tables des matières
      • Nuclear reactor systems

      • A technical, historical and dynamic approach

      • Bertrand Barré

      • Pascal Anzieu

      • Richard Lenain

      • Jean-Baptiste Thomas

      • edpsciences

      • Chapter 1. Introduction
      • 1.1. General introduction1
      • 1.2. The ebullient beginnings2
      • 1.2.1. Prehistory [1-10]4
      • 1.2.2. Uranium enrichment, the deus ex machina4
      • 1.3. Bases for comparison [12, 13]5
      • 1.3.1. Fertile and fissile isotopes5
      • 1.3.2. Moderators6
      • 1.3.3. Coolants6
      • 1.4. The driving forces of selection7
      • 1.5. Today (and tomorrow)8
      • 1.5.1. Gas-cooled reactors9
      • 1.5.2. Graphite-moderated and boiling water-cooled reactors RBMK9
      • 1.5.3. Heavy water reactors CANDU10
      • 1.5.4. Light water reactor PWR, BWR and VVER10
      • 1.5.5. High temperature reactors10
      • 1.5.6. Fast breeders [14]11
      • 1.5.7. Molten salt reactors [1]12
      • 1.6. Biotope, domination and selection12
      • 1.7. From spontaneous selection to a formalized process [14, 15]13
      • 1.7.1. GIF, the Generation IV International Forum13
      • 1.7.2. INPRO, International Project on Innovative Nuclear Reactors et Fuel Cycles14
      • 1.8. Fusion15
      • 1.9. Conclusion15
      • Chapter 2. CO2 gas cooled reactors
      • 2.1. Introduction17
      • 2.2. General architecture18
      • 2.3. General features of graphite-moderated reactors20
      • 2.3.1. Fiel : natural uranium and magnesium clad (UNGG et Magnox)20
      • 2.3.2. Graphite moderator21
      • 2.3.3. General physical properties of graphite moderated reactors23
      • 2.4. UNGG25
      • 2.4.1 The French UNGG program25
      • 2.4.2 St Laurent A example28
      • 2.5. Magnox31
      • 2.6. Advanced gas cooled reactor AGR35
      • Chapter 3. RBMK (Reactor Bolchoi Mochtnosti Kanali)
      • 3.1. General43
      • 3.2. General description44
      • 3.3. Core physics53
      • 3.4. Chernobyl accident56
      • 3.5. Changes made to improve RBMK core behavior58
      • Chapter 4. Heavy water moderated nuclear reactors
      • 4.1. Introduction61
      • 4.2. General63
      • 4.2.1. Heavy-water63
      • 4.2.2. Natural uranium64
      • 4.2.3. Pressure tubes66
      • 4.3. Description of a CANDU 668
      • 4.3.1. Reactor68
      • 4.3.2. Primary system72
      • 4.3.3. Moderator system74
      • 4.3.4. Fuel74
      • 4.3.5. Reactivity control systems75
      • 4.3.6. Safety systems76
      • 4.3.7. Fuel cycle79
      • 4.3.8. The vacuum building79
      • 4.3.9. Difficulties and incidents in the Canadian programme81
      • 4.3.10. Economy83
      • 4.4. Fuel cycle possibilities83
      • 4.4.1. CANFLEX fuel83
      • 4.4.2. Slightly enriched uranium84
      • 4.4.3. Recycling of the LWR fuel84
      • 4.4.4. Perspectives84
      • Chapter 5. Nuclear marine propulsion
      • 5.1. Introduction93
      • 5.2. Main properties required for propulsion93
      • 5.3. History and development95
      • 5.4. Naval reactor development96
      • 5.5. Civilian fleet98
      • Chapter 6. Experimental reactors
      • 6.1. Different types of experimental or research reactors101
      • 6.2. Materials irradiation reactors (MTR, TRIGA...)102
      • 6.2.1. OSIRIS, in Saclay102
      • 6.2.2. TRIGA104
      • 6.3. MTR Fuel, RERTR Programme105
      • 6.4. Neutron source reactors105
      • 6.5. Spallation sources106
      • 6.6. Materials irradiation facilities in Europe, the JHR project108
      • 6.7. Myrrha, Pallas109
      • Chapter 7. Advanced « Generation III » reactors
      • 7.1. Introduction : Genesis of « Generation III »113
      • 7.2. Evolutionary or Revolutionary ?114
      • 7.3. EPR, the Evolutionary Power Reactor [1-6]114
      • 7.3.1. Genesis of the EPR114
      • 7.3.2. EPR General Characteristics116
      • 7.3.3. Primary and secondary circuits116
      • 7.3.4. Systems architecture118
      • 7.3.5. Mitigation of severe accidents118
      • 7.3.6. Future economics of the EPR119
      • 7.3.7. EPR status in 2014121
      • 7.4. The Korean APR 1400121
      • 7.4.1. S 80+ basic options122
      • 7.4.2. General characteristics122
      • 7.4.3. Primary circuit123
      • 7.4.4. The APR 1400123
      • 7.5. The AP 600 and AP 1000 by Toshiba-Westinghouse [12-14]124
      • 7.5.1. General characteristics125
      • 7.5.2. Core and primary circuit126
      • 7.5.3. Emergency systems127
      • 7.5.4. From the AP 600 to the AP 1000129
      • 7.6. Other generation III PWRs130
      • 7.6.1. The ATMEA130
      • 7.6.2. The APWR131
      • 7.6.3. The AES 92131
      • 7.7. Japanese and American ABWRs [17-22]132
      • 7.7.1. General characteristics133
      • 7.7.2. Architecture simplification133
      • 7.7.3. Simplification of the primary circuit135
      • 7.7.4. Additional improvements136
      • 7.8. General Electric Simplified BWRs [24-29]136
      • 7.8.1. General characteristics138
      • 7.8.2. The SBWR (600-670 MWe)138
      • 7.8.3. The ESBWR (1300-1550 MWe)138
      • 7.9. The KERENA [30, 31]140
      • 7.10. SMRs [32, 33]142
      • 7.10.1. SMRs' potential advantages and drawbacks144
      • 7.10.2. Short description of four SMRs144
      • 7.10.3. Prospects for SMRs ?149
      • Chapter 8. High Temperature Reactor
      • 8.1. Obsolete or futuristic151
      • 8.2. HTR fuel [1-3]151
      • 8.3. HTR demos : Dragon, AVR, Peach bottom153
      • 8.3.1. Dragon153
      • 8.3.2. The AVR154
      • 8.3.3. Peach bottom155
      • 8.4. The « Astronuclear » Saga [6, 7]156
      • 8.5. Fort St Vrain and THTR Prototypes, the Thorium Cycle158
      • 8.5.1. Fort St Vrain158
      • 8.5.2. The Schemehausen (or Uentrop) THTR160
      • 8.5.3. The thorium cycle [8-10]160
      • 8.6. False start in the USA161
      • 8.6.1. General atomic's 1160 and 770 project161
      • 8.6.2. The French HTR programme (first period)163
      • 8.6.3. An assessment of HTR programmes, a seen from 1980163
      • 8.7. Why a renewed interest for HTRs ?165
      • 8.7.1. A changing environment165
      • 8.7.2. The GT-MHR, Gas turbine modular high temperature reactor [11-14]166
      • 8.7.3. ESKOM PBMR pebble bed modular reactor [15]167
      • 8.7.4. The VHTR and ANTARES168
      • 8.7.5. The Chinese HTR-PM169
      • Chapter 9. Molten Salt Reactors
      • 9.1. Liquid fuel reactors [1-6]171
      • 9.2. MSRE, Molten Salt Reactor Experiment171
      • 9.3. The Breeder MSR Projects172
      • 9.4. Generation IV MSRs172
      • 9.5. AHTR174
      • Chapter 10. Liquid metal cooled fast neutron reactors
      • 10.1. Introduction177
      • 10.1.1. Breeding177
      • 10.1.2. Waste incineration179
      • 10.1.3. Situation of the industry180
      • 10.2. Description of Superphenix180
      • 10.2.1. Principles180
      • 10.2.2. General design182
      • 10.2.3. Core and fuel184
      • 10.2.4. Handling the assemblies186
      • 10.2.5. Reactor block188
      • 10.2.6. Sodium circuits188
      • 10.2.7 Steam generators189
      • 10.2.8. Decay Heat Removal systems189
      • 10.2.9. Main Superphenix characteristics191
      • 10.3. Fast reactor fuel192
      • 10.3.1. Special characteristics192
      • 10.3.2. Operating criteria192
      • 10.3.3. Stresses in service192
      • 10.3.4. Fuel material193
      • 10.3.5. Clad materials and effects of irradiation194
      • 10.3.6. Characteristics of fuel elements and behaviour problems195
      • 10.3.7. Fuel behavior195
      • 10.3.8. Reprocessing197
      • 10.4. Fast reactor safety197
      • 10.4.1. Containment197
      • 10.4.2. Reactivity control200
      • 10.4.3. Decay Heat removal201
      • 10.4.4. Considering accidents involving fuel melting201
      • 10.5. Sodium technology203
      • 10.5.1. Sodium203
      • 10.5.2. The choice of sodium203
      • 10.5.3. Sodium chemistry and purification204
      • 10.5.4. Compatibility of sodium with materials205
      • 10.5.5. Circuits and instrumentation205
      • 10.5.6. Interventions, inspection, repair206
      • 10.5.7. Safety207
      • 10.5.8. Overall assessment of the use of sodium208
      • 10.6. Alternatives to sodium208
      • 10.6.1. Liquid metals208
      • 10.6.2. Corrosion by heavy liquid metals209
      • 10.6.3. Lead-bismuth reactor feedback experience210
      • 10.6.4. Lead-cooled reactors210
      • 10.6.5. Conclusion214
      • 10.7. Development prospects214
      • 10.7.1. Current context214
      • 10.7.2. Economy of sodium-cooled FRs215
      • 10.7.3. FR plutonium burner and radioactive waste transmuter215
      • 10.8. Conclusion216
      • Chapter 11. The gas-cooled fast reactor
      • 11.1. Introduction219
      • 11.2. History219
      • 11.3. The GRF, a Generation-IV system220
      • 11.4. GFR design options224
      • 11.4.1. Fuel element224
      • 11.4.2. Core design and performance225
      • 11.4.3. Primary system225
      • 11.4.4. Power conversion system228
      • 11.4.5. Towards a demonstration reactor228
      • Chapter 12. BWR : specific features, trends
      • 12.1. History, principles and architecture231
      • 12.2. Neutronics, absorbers, fuel235
      • 12.2.1. BWR vs. PWR : moderation ratio235
      • 12.2.2. Core structures and fuel assemblies, Reactor Pressure Vessel (RPV)236
      • 12.2.3. Distribution of enrichment and of poisons238
      • 12.3. Thermal-hydraulics and its tight coupling with neutronics240
      • 12.3.1. Recirculation ratio240
      • 12.3.2. Coupling between neutronics and thermal-hydraulics240
      • 12.3.3. Thermal-hydraulic instability241
      • 12.3.4. Stability loops ; conceptual scheme of a sequence of feedback effects244
      • 12.4. Operation244
      • 12.4.1. Principles244
      • 12.4.2. Operating envelope245
      • 12.4.3. Operation, fuel and plutonium245
      • 12.5. Chemistry of water and materials247
      • 12.5.1. Radiolysis247
      • 12.5.2. Cladding247
      • 12.5.3. Intergranular stress corrosion248
      • 12.5.4. Activation and gamma-emitting deposits, radiation protection in the turbine hall248
      • 12.6. Safety248
      • 12.6.1. Containment barriers248
      • 12.6.2. Containment pressure reduction249
      • 12.6.3. Safety injection, core meltdown and long-term containment250
      • 12.7. Trends256
      • 12.7.1. Safety, in the aftermath of Fukushima256
      • 12.7.2. Fuel cycle improvements259
      • Chapter 13. The place and the potential of Light Water Reactors in the transition from Gen-III to Gen-IV
      • 13.1. Introduction261
      • 13.2. The stable and plentiful ground of physics and a changing world262
      • 13.2. The Gen-IV vs Gen-III specification gap : the specifications for suistainable nuclear power264
      • 13.3.1. Introduction264
      • 13.3.2. The basic specifications : formulation and discussion264
      • 13.4. The physical basis of sustainable nuclear power : high nuclear efficiency and the conditions required to achieve it269
      • 13.5. Fast spectrum : the main constraints and specific issues272
      • 13.5.1. The design constraints related to the fast neutron spectrum272
      • 13.5.2. From the past to the future274
      • 13.6. « smart » plutonium multi-recycling in LWR : The natural uranium saving context issue276
      • 13.7. Energy scenarios and nuclear power worldwide : a prospective framework for the century278
      • 13.8. Affordable natural uranium resources280
      • 13.8.1. Rising natural uranium prices as ore of decreasing uranium concentrations has to be used280
      • 13.8.2. The strategic risk of preclusion of access to natural uranium is latent and may take form for a number of reasons283
      • 13.8.3. Shortages and price fluctuations in the short and long term uranium market283
      • 13.9. Light Water Reactors, the current situation : Strenghts, Weaknesses, Opportunities, Threats284
      • 13.9.1. Current situation284
      • 13.9.2. LWR strenghts : robust options, wealth of experience289
      • 13.9.3. Weaknesses290
      • 13.9.1. Opportunities290
      • 13.9.2. Threats291
      • 13.10. LWR : further improvements in fuel cycle efficiency by spectral hardening292
      • 13.10.1. LWR : an overview of the present fuel cycle performances, of the trends and of some possible improvements292
      • 13.10.2. The last decades : fluctuations in the objectives, shooting on a mobile target296
      • 13.10.3. The state of the art regarding the limits and the trends for the burn-up and for the recycling of plutonium298
      • 13.10.4. What could be the next step ?299
      • 13.11. A stepwise transition, a synergistic cohabitation : defining a flexible scheme for a sustainable nuclear fleet growth rate, worldwide, and transferring fissile material to the future through continuous valorization303
      • 13.11.1. Introduction303
      • 13.11.2. How to manage, from the uranium extraction rate viewpoint and from the nuclear plant type viewpoint, a strong nuclear energy growth after 2025/2030 ?304
      • 13.11.3. Competing options around 2040-2050 for the utilities and for the countries launching a large fleet of nuclear reactors307
      • 13.11.4. Best available technologies for « thrifty » Gen-3+NSSS310
      • 13.11.5. Thorium and related strategies (basically, it is a 233U issue)312
      • 13.11.6. An « exotic » enabler from « Nuclear Energy Synergetics » : fusion-fission hybrid as fissile plutonium (and 233U) factories313
      • 13.11.7. FBR fleet breeding doubling time : estimates and sensitivity analysis314
      • 13.11.8. Conclusion315
      • Chapter 14. Nuclear fusion
      • 14.1. Introduction323
      • 14.2. Principles and basic data324
      • 14.2.1. General324
      • 14.2.2. More on physical principles and basic data325
      • 14.2.3. Plasma328
      • 14.2.4. The ignition criterion329
      • 14.3. Fusion by magnetic confinement331
      • 14.3.1. Principles331
      • 14.3.2. Confinement and the Tokamak principle333
      • 14.3.3. Heating of magnetized plasma336
      • 14.3.4. Findings : principles and noteworthy facts338
      • 14.4. Fusion by inertial confinement343
      • 14.4.1. Introduction : orders of magnitude343
      • 14.4.2. Target ignition by hot point344
      • 14.4.3. Instabilities345
      • 14.4.4. Findings346
      • 14.5. Reactor and associated technology348
      • 14.5.1. Reactor principle348
      • 14.5.2. Tritium production348
      • 14.5.3. Materials352
      • 14.6. The reactor : magnetic fusion353
      • 14.6.1. Energy efficiency353
      • 14.6.2. Superconducting electromagnets355
      • 14.6.3. Divertor355
      • 14.7. The reactor : inertial fusion356
      • 14.7.1. The positive energy balance criterion356
      • 14.7.2. Energy source356
      • 14.7.3. Reaction chamber357
      • 14.7.4. Targets357
      • 14.7.5. In summary358
      • 14.8. Nuclear safety358
      • 14.8.1. Normal operation : containment of toxic substances358
      • 14.8.2. Accident situations : a few remarks358
      • 14.9. Waste358
      • 14.10. Costs359
      • 14.10.1. Composition of costs and orders of magnitude359
      • 14.10.2. Ecological impact and external costs360
      • 14.11. Historical trends, current challenges ; RetD ways and needs361
      • 14.11.1. Historical trends and current challenges361
      • 14.11.2. RetD trends and needs363
      • 14.12. Conclusion365
      • Chapter 15. Futuristic systems : ADS, Space Nuclear propulsion and power generation, ADNIS
      • 15.1. Accelerator Driven Systems (ADS)367
      • 15.1.1. Introduction367
      • 15.1.2. The physics of ADS. Basic principles and first design consequences368
      • 15.1.3. Technology and design : main specific components, challenges, and key points for feasibility374
      • 15.1.4. Preliminary techno-economic assessment381
      • 15.1.5. Defining a role for the ADS in the nuclear fleet : elements for a rationale382
      • 15.1.6. The R and D programs382
      • 15.1.7. The future in the world, in Europe, in France383
      • 15.2. Nuclear space power and propulsion383
      • 15.3. Advanced neutron irradiation sources (NIS)389
      • Chapter 16. A few questions fostering further thought on some key issues
      • 16.1. The designer's carrousel393
      • 16.2. Entering a new era or circling around a carrousel ?393
      • 16.3. Main questions to be addressed (combining innovation, design, marketing and acceptance issues)394
      • 16.4. Some answers coming from past and recent history395
      • 16.5. Design as a conceptual approach : design wheel and « helix »397
      • 16.6. Beyond the incremental improvement of LWRs (safety, flexibility,fuel cycle (plutonium), lifetime, availability, uprating), what are the main achievements of recent (in the last three decades) design and operational qualification for power reactors ?397
      • 16.7. Other examples399
      • 16.8. The coolant issue : updating some questions400
      • 16.9. As for the coolant choice, there is no single merit index401
      • 16.10. Main topics involved in the coolant issue402
      • 16.11. Multi-criteria assessment : the representation and computation issue ; a tentative representation diagram404
      • 16.12. Making a positive contribution to the qualification of Gen-IV « enablers »405
      • 16.13. Knowledge bases and tools405
      • 16.14. « War » is (or should be) over406
      • 16.15. Optimisation of a multi-strata nuclear fleet achieving « smart recycling » is the new frontier407
      • 16.16. Qualification (including substantial operation feedback) of all efficient enablers, with an updated design fulfilling the post-Fukushima requirements, must be started ASAP407

  • Origine de la notice:
    • Abes ;
    • Electre
  • Disponible - 621.10 NUC

    Niveau 3 - Techniques