• Aide
  • Eurêkoi Eurêkoi

Livre

Multiphase production : pipeline transport, pumping and metering

Résumé

Un panorama sur les approches et les technologies utilisées pour des systèmes de production multi-phasé (le transport, le pompage, la surveillance et gestion de la performance des systèmes, les dispositifs de mesure...). Présente les étapes fondamentales pour la simulation d'écoulement, le pompage, et de dosage multi-phasés dans les pipelines.


  • Autre(s) auteur(s)
  • Éditeur(s)
  • Date
    • 2008
  • Notes
    • Bibliogr. Index
    • En anglais
  • Langues
    • Français
  • Description matérielle
    • 177 p. : ill. ; 24 x 17 cm
  • Collections
  • Sujet(s)
  • ISBN
    • 978-2-7108-0913-5
  • Indice
    • 665 Industrie pétrolière, pétrochimie
  • Quatrième de couverture
    • Fluids produced from hydrocarbon fields are composed of a mixture of oil, gas and water, often with corrosive components, sometimes laden with solid particles, and are a potential source of many flow instabilities. Frequently, they are now directly exported long distances, in multiphase conditions, towards an existing processing facility or a new processing centre created to serve simultaneously several new fields. This production scheme, which is especially applied offshore, in mature basins such as in the North Sea or in the Gulf of Mexico where infrastructure exists over large areas, can also improve the economics of small or deepwater fields.

      This book presents the fundamentals of multiphase production with regard to flow simulations in multiphase pipelines, multiphase pumping and multiphase metering. It gives first a description of the multiphase flow patterns that may appear in a pipe and explains how they are managed by the models. It also offers a good introduction to modelling of hydrodynamic effects, thermodynamics and thermal exchanges.

      Multiphase pumps are now deployed in fields, whether onshore, offshore or subsea, all over the world, where natural reservoir pressure is insufficient. The book presents the various multiphase pump concepts and explains their operating principles and how they can be introduced into a production system.

      An adequate instrumentation system is needed to monitor and control the performance of such systems and multiphase meters are increasingly used in place of conventional test separators, both offshore and onshore. This book provides the basic principles of multiphase metering, which relies on a combination of elementary measurements, and particularly the means to meter the oil, gas and produced water flowrates in multiphase conditions.

      The successful application of long-distance multiphase transportation, multiphase pumps and meters has paved the way for the development of subsea processing, presented and discussed in the last chapter which deals with new areas such as subsea separation, subsea gas compression, energy recovery with a multiphase turbine, etc.

      This book gives a large range of information on approaches and technologies which can be used today. It is designed for engineers involved in field development, but also for petroleum engineering students.


  • Tables des matières
      • Multiphase production

      • Pipeline Transport, Pumping and Metering

      • J. Falcimaigne/S. Decarre

      • Editions Technip

      • Foreword V
      • Acknowledgements VIII
      • Symbols IX
      • Chapter 1 Multiphase flow in pipelines
      • 1.1 Introduction 1
      • 1.2 Flow Pattern Description 3
      • 1.2.1 Gas-Liquid Flow4
      • 1.2.2 Liquid-Liquid Flow5
      • 1.2.3 Gas-Liquid-Liquid Flow7
      • 1.2.4 Solid Suspensions8
      • 1.2.5 Flow Pattern Transitions9
      • 1.3 Physical Modelling 12
      • 1.3.1 Basic State Equations12
      • 1.3.2 Drift Flux Model14
      • 1.3.3 Hydrodynamic Closure Laws for the Transportation Equations15
      • 1.3.3.1 Stratified Flow15
      • 1.3.3.2 Dispersed Flow17
      • 1.3.3.3 Slug Flow18
      • 1.3.4 Complex Phenomena20
      • 1.3.4.1 Gravity Induced Slug20
      • 1.3.4.2 Junction Flow21
      • 1.3.5 Thermodynamic Modelling22
      • 1.3.5.1 Fluid Behaviour22
      • 1.3.5.2 Thermodynamic Models for Fluid Property Calculation24
      • 1.3.5.3 Fluid Description30
      • 1.3.5.4 Phase-Equilibrium Calculation33
      • 1.3.5.5 Conclusion34
      • 1.3.6 Thermal Aspects35
      • 1.3.6.1 Introduction36
      • 1.3.6.2 Fluid Heat Transfer Coefficient37
      • 1.3.6.3 Surrounding Medium Behaviour38
      • 1.3.6.4 Overall Heat Transfer Coefficient38
      • 1.3.6.5 Conclusion41
      • Chapter 2 Multiphase Pumping
      • 2.1 Introduction 43
      • 2.2 Overview of Multiphase Pumping 44
      • 2.2.1 Benefits and Typical Applications44
      • 2.2.2 Types of Pumps44
      • 2.2.3 Main Issues of Multiphase Boosting46
      • 2.2.3.1 Variation of Flow Conditions46
      • 2.2.3.2 Gas Compressibility49
      • 2.2.3.3 Gas Re-Dissolution49
      • 2.2.3.4 Reliability and Availability50
      • 2.2.3.5 Sealing50
      • 2.3 Positive Displacement Pumps 51
      • 2.3.1 Twin-Screw Pumps51
      • 2.3.1.1 Principle and General Arrangement51
      • 2.3.1.2 Typical Duties, Performance55
      • 2.3.1.3 Advantages, Limitations56
      • 2.3.2 Progressing Cavity Pumps56
      • 2.4 Helico-Axial Rotodynamic Pumps 57
      • 2.4.1 Principle and General Arrangement58
      • 2.4.2 Duties, Performance60
      • 2.4.2.1 Head and Efficiency60
      • 2.4.2.2 Multiphase Performance Multipliers61
      • 2.4.2.3 Characteristic Curves63
      • 2.4.2.4 Affinity Laws65
      • 2.4.2.5 Multiphase Performance Models65
      • 2.4.2.6 Flow Instabilities66
      • 2.4.3 Advantages, Limitations66
      • 2.5 Multiphase Pump Operation 67
      • 2.5.1 Pump Duty67
      • 2.5.1.1 Definition of Operating Domain67
      • 2.5.1.2 Pump Selection Procedure68
      • 2.5.2 Steady-State Performance Analysis68
      • 2.5.2.1 Characteristic and System Curves68
      • 2.5.2.2 Parallel and Series Operations70
      • 2.5.3 Thermodynamic Topics70
      • 2.5.3.1 Compression Work70
      • 2.5.3.2 Temperature Rises72
      • 2.5.3.3 Efficiency75
      • 2.5.4 Transient Behaviour76
      • 2.5.5 Pump Control77
      • 2.5.5.1 Flow Homogeniser78
      • 2.5.5.2 Self-Adaptability Capability78
      • 2.5.5.3 Process Control78
      • 2.5.6 Monitoring80
      • 2.6 Field Applications of Helico-Axial Pumps 81
      • 2.6.1 The Early Stage: Field Demonstrations81
      • 2.6.2 Overview of Typical Surface Applications83
      • 2.6.2.1 Samotlor - Western Siberia83
      • 2.6.2.2 Duri - Indonesia83
      • 2.6.2.3 Dunbar - Offshore North Sea84
      • 2.6.2.4 Lennox - Offshore Irish Sea85
      • 2.6.2.5 Priobskoye - Western Siberia86
      • 2.6.3 Subsea Pumps Development and Applications86
      • 2.6.3.1 Draugen - North Sea87
      • 2.6.3.2 Topacio - Subsea Gulf of Guinea87
      • 2.6.3.3 Ceiba - Subsea Gulf of Guinea88
      • 2.6.4 Downhole Applications89
      • 2.7 Conclusion 90
      • Chapter 3 Multiphase metering
      • 3.1 Introduction 91
      • 3.2 Fundamentals of Multiphase Metering 92
      • 3.2.1 Mixture Composition92
      • 3.2.2 Basic Measurements94
      • 3.2.3 Velocity Slip Management and Flow Conditioning95
      • 3.2.4 Types of Multiphase Meters96
      • 3.2.5 Examples of Multiphase Meters97
      • 3.3 Phase Fraction Measurements 97
      • 3.3.1 Methods97
      • 3.3.2 Gamma-Ray Densitometry99
      • 3.3.2.1 Principles and Base of Technology99
      • 3.3.2.2 Single Energy and Double Energy Densitometers101
      • 3.3.2.3 Advantages and Drawbacks of Gamma-Ray Densitometers103
      • 3.3.3 Electrical Methods103
      • 3.3.3.1 General103
      • 3.3.3.2 Conductance104
      • 3.3.3.3 Capacitance and Microwave Methods104
      • 3.3.4 Indirect Density Measurements108
      • 3.3.4.1 Coriolis Meters108
      • 3.3.4.2 Combination of Differential Pressure and Volumetric Flowrate108
      • 3.3.4.3 Combination of Two Differential Pressure Measurements109
      • 3.4 Flow Measurements 109
      • 3.4.1 Methods109
      • 3.4.2 Differential Pressure Measurements109
      • 3.4.3 Volumetric Meters112
      • 3.4.3.1 Positive-Displacement Meters112
      • 3.4.3.2 Turbines113
      • 3.4.4 Cross-Correlation113
      • 3.4.5 Ultrasonic Measurements113
      • 3.4.5.1 Acoustic Transducers114
      • 3.4.5.2 Transit Time Measurements115
      • 3.4.5.3 Acoustic Signal Backscatter116
      • 3.5 Overview of Advanced Methods 117
      • 3.5.1 Analysis of High Frequency Flow Signal117
      • 3.5.2 Microwave Doppler Velocity Measurements118
      • 3.6 Performance Description and Calibration 119
      • 3.6.1 Operating Domain119
      • 3.6.2 Performance Description120
      • 3.6.2.1 Accuracy120
      • 3.6.2.2 Repeatability121
      • 3.6.2.3 Sensitivity and Tolerance121
      • 3.6.3 Calibration121
      • 3.6.4 Tests122
      • 3.6.4.1 Factory Tests122
      • 3.6.4.2 Tests in Multiphase Flow Facilities122
      • 3.6.4.3 Field Tests124
      • 3.7 Field Experience 124
      • 3.7.1 Extensive Field Testing of MPFM124
      • 3.7.1.1 Agar MPFM-400124
      • 3.7.1.2 3-Phase Vx MPFM125
      • 3.7.1.3 Roxar 1900VI128
      • 3.7.1.4 Esmer MPFM128
      • 3.7.2 Comparative Field Testing131
      • Chapter 4 New Challenges
      • 4.1 Introduction 133
      • 4.2 Hydrate Transportation in Slurry 133
      • 4.2.1 Prevention of Hydrate Formation with Long Tie-Back133
      • 4.2.1.1 Low Dosage Inhibitors135
      • 4.2.1.2 Formation of Stable Non-Agglomerant Hydrates136
      • 4.2.2 Main Issues of Slurry Transportation136
      • 4.2.2.1 Behaviour of Hydrate Slurries136
      • 4.2.2.2 Other Issues138
      • 4.3 Subsea Separation 138
      • 4.3.1 Experience of Subsea Separation138
      • 4.3.1.1 Review of Past Attempts138
      • 4.3.1.2 Gas Liquid Separation: the VASPS140
      • 4.3.1.3 Produced Water Separation: the Troll Pilot Station140
      • 4.3.2 Subsea Separation in Deep Water140
      • 4.3.2.1 Introduction140
      • 4.3.2.2 Advantages of Water Separation in Deep Water141
      • 4.3.2.3 Advantages of Gas-Liquid Separation in Deep Water142
      • 4.3.2.4 Main Issues of Subsea Separation142
      • 4.3.2.5 DIPSIS: a Typical Water Separation Station144
      • 4.3.3 Conclusion146
      • 4.4 Subsea Gas Compression 147
      • 4.4.1 Introduction147
      • 4.4.2 Technological Concepts148
      • 4.4.2.1 Compression Systems148
      • 4.4.2.2 Direct Compression of Wet Gas148
      • 4.4.2.3 Subsea Compression of Dry Gas150
      • 4.4.3 Technical Issues of Subsea Compression150
      • 4.4.3.1 Compressor Design150
      • 4.4.3.2 Electrical Supply151
      • 4.5 Multiphase Flow Turbines 151
      • 4.5.1 Introduction151
      • 4.5.2 Typical Applications of Multiphase Turbines151
      • 4.5.2.1 General151
      • 4.5.2.2 Upstream Applications152
      • 4.5.2.3 Downstream Applications156
      • 4.5.3 Technological Concepts157
      • 4.5.3.1 Impulse Type TP Turbines157
      • 4.5.3.2 Helico-Axial TP Turbine157
      • 4.5.4 Main Issues157
      • 4.5.4.1 Diversity of Turbine Characteristics159
      • 4.5.4.2 Energy Recovery and Production Schemes159
      • References 161
      • Index 173

  • Origine de la notice:
    • Electre
  • Disponible - 665 FAL

    Niveau 3 - Techniques